lightonml.opu¶
This module contains the OPU class

class
OPU
(n_components: int = 200000, opu_device: Union[lightonml.internal.device.OpuDevice, lightonml.internal.simulated_device.SimulatedOpuDevice, None] = None, max_n_features: int = 1000, config_file: str = '', config_override: dict = None, verbose_level: int = 1, input_roi_strategy: lightonml.internal.types.InputRoiStrategy = <InputRoiStrategy.auto: 3>, open_at_init: bool = None, disable_pbar=False)[source]¶ Interface to the OPU.
\[\mathbf{y} = \lvert \mathbf{R} \mathbf{x} \rvert^2\]Main methods are
transform
,fit1d
andfit2d
, and accept NumPy arrays or PyTorch tensors.Acquiring/releasing hardware device resources is done by open/close and a contextmanager interface.
Unless
open_at_init=False
, these resources are acquired automatically at init. If another process or kernel has not released the resources, an error will be raised, callclose()
or shutdown the kernel on the OPU object to release it. Parameters
n_components (int,) – dimensionality of the target projection space.
opu_device (OpuDevice or SimulatedOpuDevice, optional) – optical processing unit instance linked to a physical or simulated device. If not provided, a device is properly instantiated. If opu_device is of type SimulatedOpuDevice, the random matrix is generated at __init__, using max_n_features and n_components
max_n_features (int, optional) – maximum number of binary features that the OPU will transform used only if opu_device is a SimulatedOpuDevice, in order to initiate the random matrix
config_file (str, optional) – path to the configuration file (for dev purpose)
config_override (dict, optional) – for override of the config_file (for dev purpose)
verbose_level (int, optional) – deprecated, use lightonml.set_verbose_level instead
input_roi_strategy (types.InputRoiStrategy, optional) – describes how to display the features on the input device .. seealso::
lightonml.types.InputRoiStrategy
open_at_init (bool, optional) – forces the setting of acquiring hardware resource at init. If not provided, follow system’s setting (usually True)

max_n_features
¶ maximum number of binary features that the OPU will transform writeable only if opu_device is a SimulatedOpuDevice, in order to initiate or resize the random matrix
 Type

device
¶ underlying hardware that performs transformation (readonly)
 Type
OpuDevice or SimulatedOpuDevice

input_roi_strategy
¶ describes how to display the features on the input device
 Type
types.InputRoiStrategy, optional

property
config
¶ Returns the internal configuration object

fit1d
(X=None, n_features: int = None, packed: bool = False, online=False, **override)[source]¶ Configure OPU transform for 1d vectors
The function can be either called with input vector, for fitting OPU parameters to it, or just vector dimensions, with
n_features
.When input is bitpacked the packed flag must be set to True.
When input vectors must be transformed one by one, performance will be improved with the online flag set to True.
 Parameters
X (np.ndarray or torch.Tensor) – Fit will be made on this vector to optimize transform parameters
n_features (int) – Number of features for the input, necessary if X parameter isn’t provided
packed (bool) – Set to true if the input vectors will be already bitpacked
online (bool, optional) – Set to true if the transforms will be made one vector after the other defaults to False
override (keyword args for overriding transform settings (advanced parameters)) –

fit2d
(X=None, n_features: Tuple[int, int] = None, packed: bool = False, online=False, **override)[source]¶ Configure OPU transform for 2d vectors
The function can be either called with input vector, for fitting OPU parameters to it, or just vector dimensions, with
n_features
.When input is bitpacked the packed flag must be set to True. Number of features must be then provided with
n_features
When input vectors must be transformed one by one, performance will be improved with the online flag set to True.
 Parameters
X (np.ndarray or torch.Tensor) – a 2d input vector, or batch of 2d input_vectors, binary encoded, packed or not
n_features (tuple(int)) – Number of features for the input, necessary if X parameter isn’t provided, or if input is bitpacked
packed (bool, optional) – whether the input data is in bitpacked representation if True, each input vector is assumed to be a 1d array, and the “real” number of features must be provided as n_features defaults to False
online (bool, optional) – Set to true if the transforms will be made one vector after the other defaults to False
override (keyword args for overriding transform settings (advanced parameters)) –

fit_transform1d
(X, packed: bool = False, **override) → lightonml.context.ContextArray[source]¶ Performs the nonlinear random projections of 1d input vector(s).
This function is the oneliner equivalent of
fit1d
andtransform
calls.Warning
when making several transform calls, prefer calling
fit1d
and thentransform
, or you might encounter an inconsistency in the transformation matrix.The input data can be bitpacked, where
n_features = 8*X.shape[1]
Otherwisen_features = X.shape[1]
If tqdm module is available, it is used for progress display
 Parameters
X (np.ndarray or torch.Tensor) – a 1d input vector, or batch of 1d input_vectors, binary encoded, packed or not batch can be 1d or 2d. In all cases
output.shape[:1] = X.shape[:1]
packed (bool, optional) – whether the input data is in bitpacked representation defaults to False
override (keyword args for overriding transform settings (advanced parameters)) –
 Returns
Y – complete array of nonlinear random projections of X, of size self.n_components If input is an ndarray, type is actually ContextArray, with a context attribute to add metadata
 Return type
np.ndarray or torch.Tensor

fit_transform2d
(X, packed: bool = False, n_2d_features=None, **override) → lightonml.context.ContextArray[source]¶ Performs the nonlinear random projections of 2d input vector(s).
This function is the oneliner equivalent of
fit2d
andtransform
calls.Warning
when making several transform calls, prefer calling
fit2d
and thentransform
, or you might encounter an inconsistency in the transformation matrix.If tqdm module is available, it is used for progress display
 Parameters
X (np.ndarray or torch.Tensor) – a 2d input vector, or batch of 2d input_vectors, binary encoded, packed or not
packed (bool, optional) – whether the input data is in bitpacked representation if True, each input vector is assumed to be a 1d array, and the “real” number of features must be provided as n_2d_features defaults to False
n_2d_features (list, tuple or np.ndarray of length 2) – If the input is bitpacked, specifies the shape of each input vector. Not needed if the input isn’t bitpacked.
override (keyword args for overriding transform settings (advanced parameters)) –
 Returns
Y – complete array of nonlinear random projections of X, of size self.n_components If input is an ndarray, type is actually ContextArray, with a context attribute to add metadata
 Return type
np.ndarray or torch.Tensor

open
()[source]¶ Acquires hardware resources used by the OPU device
See also
close()
or use the context manager interface for closing at the end af an indent block

transform
(X) → Union[lightonml.context.ContextArray, Tensor][source]¶ Performs the nonlinear random projections of one or several input vectors.
The
fit1d
orfit2d
method must be called before, for setting vector dimensions or online option. If you need to transform one vector after each other, Parameters
X (np.ndarray or torch.Tensor) – input vector, or batch of input vectors. Each vector must have the same dimensions as the one given in
fit1d
orfit2d
. Returns
Y – complete array of nonlinear random projections of X, of size self.n_components If input is an ndarray, type is actually ContextArray, with a context attribute to add metadata
 Return type
np.ndarray or torch.Tensor

transform1d
(*args, **kwargs) → Union[lightonml.context.ContextArray, Tensor][source]¶ Performs the nonlinear random projections of one 1d input vector, or a batch of 1d input vectors.
This function is only for backwards compatibility, prefer using
fit1d
followed bytransform
, orfit_transform1d
Warning
when making several transform calls, prefer calling
fit1d
and thentransform
, or you might encounter an inconsistency in the transformation matrix.The input data can be bitpacked, where
n_features = 8*X.shape[1]
Otherwisen_features = X.shape[1]
Deprecated since version 1.2.
 Parameters
X (np.ndarray or torch.Tensor) – a 1d input vector, or batch of 1d input_vectors, binary encoded, packed or not batch can be 1d or 2d. In all cases
output.shape[:1] = X.shape[:1]
packed (bool, optional) – whether the input data is in bitpacked representation defaults to False
override (keyword args for overriding transform settings (advanced parameters)) –
 Returns
Y – complete array of nonlinear random projections of X, of size self.n_components type is actually ContextArray, with a context attribute to add metadata
 Return type
np.ndarray or torch.Tensor

transform2d
(*args, **kwargs) → Union[lightonml.context.ContextArray, Tensor][source]¶ Performs the nonlinear random projections of one 2d input vector, or a batch of 2d input vectors.
Warning
when making several
transform
calls, prefer callingfit2d
and thentransform
, or you might encounter an inconsistency in the transformation matrix.This function is only for backwards compatibility, prefer using
fit2d
followed by transform, orfit_transform2d
.Deprecated since version 1.2.
 Parameters
X (np.ndarray or torch.Tensor) – a 2d input vector, or batch of 2d input_vectors, binary encoded, packed or not
packed (bool, optional) – whether the input data is in bitpacked representation if True, each input vector is assumed to be a 1d array, and the “real” number of features must be provided as n_2d_features defaults to False
n_2d_features (list, tuple or np.ndarray of length 2) – If the input is bitpacked, specifies the shape of each input vector. Not needed if the input isn’t bitpacked.
override (keyword args for overriding transform settings (advanced parameters)) –
 Returns
Y – complete array of nonlinear random projections of X, of size self.n_components If input is an ndarray, type is actually ContextArray, with a context attribute to add metadata
 Return type
np.ndarray or torch.Tensor
Copyright (c) 2020 LightOn, All Rights Reserved. This file is subject to the terms and conditions defined in file ‘LICENSE.txt’, which is part of this source code package.
Module containing enums used with opu.OPU class

class
FeaturesFormat
[source]¶ Strategy used for the formatting of data on the input device

lined
= 1¶ Features are positioned in line

macro_2d
= 2¶ Features are zoomed into elements

none
= 4¶ No formatting
input is displayed asis, but it must match the same number of elements of the input device


class
InputRoiStrategy
[source]¶ Strategy used for computing the input ROI

auto
= 3¶ Try to find the most appropriate between these two modes

full
= 1¶ Apply zoom on elements to fill the whole display

small
= 2¶ Center the features on the display, with onetoone element mapping


class
OutputRoiStrategy
[source]¶ Strategy used for computing the output ROI

mid_square
= 2¶ Area in the middle & square (Saturn)

mid_width
= 1¶ Area in the middle & max_width, to have max speed (Zeus, Vulcain)


class
Context
(frametime: int = None, exposure: int = None, output_roi: Tuple[Tuple[int, int], Tuple[int, int]] = None, start: datetime.datetime = None, end: datetime.datetime = None, gain: float = None, input_roi: Tuple[Tuple[int, int], Tuple[int, int]] = None, n_ones: int = None, fmt_type: lightonml.internal.types.FeaturesFormat = None, fmt_factor: int = None)[source]¶ Describes the context of an OPU transform

input_roi
¶ (offset, size) of the input device region of interest

self.
fmt_type
¶ type of formatting used to map features to the input device
 Type
lightonml.types.FeaturesFormat
